A Tetrahedron-Based Endmember Selection Approach for Urban Impervious Surface Mapping

نویسندگان

  • Wei Wang
  • Xinfeng Yao
  • Junpeng Zhai
  • Minhe Ji
چکیده

The pixel purity index (PPI) and two-dimensional (2-D) scatter plots are two popular techniques for endmember extraction in remote sensing spectral mixture analysis, yet both suffer from one major drawback, that is, the selection of a final set of endmembers has to endure a cumbersome process of iterative visual inspection and human intervention, especially when a spectrally-complex urban scene is involved. Within the conceptual framework of a V-H-L-S (vegetation-high albedo-low albedo-soil) model, which is expanded from the classic V-I-S (vegetation-impervious surface-soil) model, a tetrahedron-based endmember selection approach combined with a multi-objective optimization genetic algorithm (MOGA) was designed to identify urban endmembers from multispectral imagery. The tetrahedron defining the enclosing volume of MNF-transformed pixels in a three-dimensional (3-D) space was algorithmically sought, so that the tetrahedral vertices can ideally match the four components of the adopted model. A case study with Landsat Enhanced Thematic Mapper Plus (ETM+) satellite imagery in Shanghai, China was conducted to verify the validity of the method. The method performance was compared with those of the traditional PPI and 2-D scatter plots approaches. The results indicated that the tetrahedron-based endmember selection approach performed better in both accuracy and ease of identification for urban surface endmembers owing to the 3-D visualization analysis and use of the MOGA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incorporating Endmember Variability into Linear Unmixing of Coarse Resolution Imagery: Mapping Large-Scale Impervious Surface Abundance Using a Hierarchically Object-Based Spectral Mixture Analysis

As an important indicator of anthropogenic impacts on the Earth’s surface, it is of great necessity to accurately map large-scale urbanized areas for various science and policy applications. Although spectral mixture analysis (SMA) can provide spatial distribution and quantitative fractions for better representations of urban areas, this technique is rarely explored with 1-km resolution imagery...

متن کامل

Modified multiple endmember spectral mixture analysis for mapping impervious surfaces in urban environments

A modified multiple endmember spectral mixture analysis (MMESMA) approach is proposed for high-spatial-resolution hyperspectral imagery in the application of impervious surface mapping. Different from the original MESMA that usually selects one endmember spectral signature for each land-cover class, the proposed MMESMA allows the selection of multiple endmember signatures for each land-cover cl...

متن کامل

A Comparison of Spectral Mixture Analysis Methods for Urban Landscape Using Landsat Etm+ Data: Los Angeles, Ca

Although spectral mixture analysis has been widely used for mapping the abundances of physical components of urban surface with moderate spatial resolution satellite imagery recently, the spectral heterogeneity of urban land surface has still posed a great challenge to accurately estimate fractions of surface materials within a pixel. How to dealing with the highly spectral heterogeneous nature...

متن کامل

Surface Urban Heat Island in Shanghai, China: Examining the Relationship between Land Surface Temperature and Impervious Surface Fractions Derived from Landsat Etm+ Imagery

This paper investigates the relationship between the surface urban heat islands (SUHI) and the percent impervious surface area (%ISA) in Shanghai, China. The %ISA was characterized from a Landsat-7 ETM+ multispectral dataset using the Linear Mixture Spectral Analysis (LMSA). Several critical steps being taken to derive %ISA were discussed, including atmospheric and geometric correction, water f...

متن کامل

A Modified Normalized Difference Impervious Surface Index (MNDISI) for Automatic Urban Mapping from Landsat Imagery

Impervious surface area (ISA) is a key factor for monitoring urban environment and land development. Automatic mapping of impervious surfaces has attracted growing attention in recent years. Spectral built-up indices are considered promising to map ISA distributions due to their easy, parameter-free implementations. This study explores the potentials of impervious surface indices for ISA mappin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014